Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Curr Protoc ; 4(4): e1023, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38606936

ABSTRACT

Necroptosis is a form of inflammatory lytic cell death involving active cytokine production and plasma membrane rupture. Progression of necroptosis is tightly regulated in time and space, and its signaling outcomes can shape the local inflammatory environment of cells and tissues. Pharmacological induction of necroptosis is well established, but the diffusive nature of chemical death inducers makes it challenging to study cell-cell communication precisely during necroptosis. Receptor-interacting protein kinase 3, or RIPK3, is a crucial signaling component of necroptosis, acting as a crucial signaling node for both canonical and non-canonical necroptosis. RIPK3 oligomerization is crucial to the formation of the necrosome, which regulates plasma membrane rupture and cytokine production. Commonly used necroptosis inducers can activate multiple downstream signaling pathways, confounding the signaling outcomes of RIPK3-mediated necroptosis. Opsin-free optogenetic techniques may provide an alternative strategy to address this issue. Optogenetics uses light-sensitive protein-protein interaction to modulate cell signaling. Compared to chemical-based approaches, optogenetic strategies allow for spatiotemporal modulation of signal transduction in live cells and animals. We developed an optogenetic system that allows for ligand-free optical control of RIPK3 oligomerization and necroptosis. This article describes the sample preparation, experimental setup, and optimization required to achieve robust optogenetic induction of RIPK3-mediated necroptosis in colorectal HT-29 cells. We expect that this optogenetic system could provide valuable insights into the dynamic nature of lytic cell death. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of lentivirus encoding the optogenetic RIPK3 system Support Protocol: Quantification of the titer of lentivirus Basic Protocol 2: Culturing, chemical transfection, and lentivirus transduction of HT-29 cells Basic Protocol 3: Optimization of optogenetic stimulation conditions Basic Protocol 4: Time-stamped live-cell imaging of HT-29 lytic cell death Basic Protocol 5: Quantification of HT-29 lytic cell death.


Subject(s)
Optogenetics , Signal Transduction , Humans , Animals , Cell Death/genetics , HT29 Cells , Cytokines
2.
Clin Transl Med ; 13(5): e1243, 2023 05.
Article in English | MEDLINE | ID: mdl-37132114

ABSTRACT

BACKGROUND: Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye. AIMS AND METHODS: This work summarizes the progress of current clinical trials and provides a brief overview of basic structures and photophysics of commonly used photoactivable proteins. We highlight recent achievements such as optogenetic control of the chimeric antigen receptor, CRISPR-Cas system, gene expression, and organelle dynamics. We discuss conceptual innovation and technical challenges faced by current optogenetic research. CONCLUSION: In doing so, we provide a framework that showcases ever-growing applications of optogenetics in biomedical research and may inform novel precise medicine strategies based on this enabling technology.


Subject(s)
Light , Optogenetics , Optogenetics/methods , CRISPR-Cas Systems
3.
Adv Biol (Weinh) ; 5(5): e2000180, 2021 05.
Article in English | MEDLINE | ID: mdl-34028216

ABSTRACT

Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub-micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever-increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.


Subject(s)
Light , Signal Transduction , Animals , Optogenetics , Proteins/genetics
5.
J Mol Biol ; 432(17): 4773-4782, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32682743

ABSTRACT

Membrane fusion during synaptic transmission mediates the trafficking of chemical signals and neuronal communication. The fast kinetics of membrane fusion on the order of millisecond is precisely regulated by the assembly of SNAREs and accessory proteins. It is believed that the formation of the SNARE complex is a key step during membrane fusion. Little is known, however, about the molecular machinery that mediates the formation of a large pre-fusion complex, including multiple SNAREs and accessory proteins. Syntaxin, a transmembrane protein on the plasma membrane, has been observed to undergo oligomerization to form clusters. Whether this clustering plays a critical role in membrane fusion is poorly understood in live cells. Optogenetics is an emerging biotechnology armed with the capacity to precisely modulate protein-protein interaction in time and space. Here, we propose an experimental scheme that combines optogenetics with single-vesicle membrane fusion, aiming to gain a better understanding of the molecular mechanism by which the syntaxin cluster regulates membrane fusion. We envision that newly developed optogenetic tools could facilitate the mechanistic understanding of synaptic transmission in live cells and animals.


Subject(s)
Qa-SNARE Proteins/chemistry , Qa-SNARE Proteins/metabolism , Synaptic Membranes/physiology , Animals , Humans , Membrane Fusion , Neurons/physiology , Optogenetics , Protein Multimerization , Synaptic Transmission
6.
J Mol Biol ; 432(10): 3149-3158, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32277988

ABSTRACT

Ligand-independent activation of receptor tyrosine kinases (RTKs) allows for dissecting out the receptor-specific signaling outcomes from the pleiotropic effects of the ligands. In this regard, RTK intracellular domains (ICD) are of interest due to their ability to recapitulate signaling activity in a ligand-independent manner when fused to chemical or optical dimerizing domains. A common strategy for synthetic activation of RTKs involves membrane tethering of dimerizer-RTK ICD fusions. Depending on the intrinsic signaling capacity, however, this approach could entail undesirable baseline signaling activity in the absence of stimulus, thereby diminishing the system's sensitivity. Here, we observed toxicity in early Xenopus laevis embryos when using such a conventional optogenetic design for the fibroblast growth factor receptor (FGFR). To surpass this challenge, we developed a cytoplasm-to-membrane translocation approach, where FGFR ICD is recruited from the cytoplasm to the plasma membrane by light, followed by its subsequent activation via homo-association. This strategy results in the optical activation of FGFR with low background activity and high sensitivity, which allows for the light-mediated formation of ectopic tail-like structures in developing X. laevis embryos. We further generalized this strategy by developing optogenetic platforms to control three neurotrophic tropomyosin receptor kinases, TrkA, TrkB, and TrkC. We envision that these ligand-independent optogenetic RTKs will provide useful toolsets for the delineation of signaling sub-circuits in developing vertebrate embryos.


Subject(s)
Optogenetics/methods , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Xenopus laevis/growth & development , Animals , Cell Membrane/metabolism , Cytoplasm/metabolism , Embryonic Development , HEK293 Cells , Humans , Protein Transport , Receptor Protein-Tyrosine Kinases/chemistry , Signal Transduction , Xenopus Proteins/chemistry , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/genetics
7.
Cell Death Dis ; 11(1): 67, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31988307

ABSTRACT

TCEA3 is one of three genes representing the transcription elongation factor TFIIS family in vertebrates. TCEA3 is upregulated during skeletal muscle differentiation and acts to promote muscle specific gene expression during myogenesis. Rhabdomyosarcoma (RMS) is a pediatric cancer derived from the muscle lineage, but the expression or function of TCEA3 in RMS was uncharacterized. We found that TCEA3 expression was strongly inhibited in RMS cell lines representing both ERMS and ARMS subtypes of RMS. TCEA3 expression correlates with DNA methylation and we show that TBX2 is also involved in the repression of TCEA3 in RMS cell lines. Ectopic expression of TCEA3 inhibited proliferation of RMS cell lines and initiated apoptosis through both the intrinsic and extrinsic pathways. We found that only pan-caspase inhibitors could block apoptosis in the presence of TCEA3. While expression of TCEA3 is highest in skeletal muscle, expression has been detected in other tissues as well, including breast, ovarian and prostate. We found that ectopic expression of TCEA3 also promotes apoptosis in HeLa, MCF7, MDA-231, and PC3 cell lines, representing cervical, breast, and prostate cancer, respectively. Restoration of TCEA3 expression in RMS cell lines enhanced sensitivity to chemotherapeutic drugs, including TRAIL. Thus, TCEA3 presents a novel target for therapeutic strategies to promote apoptosis and enhance sensitivity to current chemotherapeutic drugs.


Subject(s)
Apoptosis/genetics , Gene Expression Regulation, Neoplastic/genetics , Rhabdomyosarcoma/metabolism , Transcriptional Elongation Factors/metabolism , Amino Acid Chloromethyl Ketones/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspase Inhibitors/pharmacology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , DNA Methylation/genetics , Dactinomycin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Rhabdomyosarcoma/genetics , Transcriptional Elongation Factors/genetics , Up-Regulation
8.
Oncogenesis ; 8(4): 27, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-30979887

ABSTRACT

TBX2 and TBX3 function as repressors and are frequently implicated in oncogenesis. We have shown that TBX2 represses p21, p14/19, and PTEN in rhabdomyosarcoma (RMS) and skeletal muscle but the function and regulation of TBX3 were unclear. We show that TBX3 directly represses TBX2 in RMS and skeletal muscle. TBX3 overexpression impairs cell growth and migration and we show that TBX3 is directly repressed by the polycomb repressive complex 2 (PRC2), which methylates histone H3 lysine 27 (H3K27me). We found that TBX3 promotes differentiation only in the presence of early growth response factor 1 (EGR1), which is differentially expressed in RMS and is also a target of the PRC2 complex. The potent regulation axis revealed in this work provides novel insight into the effects of the PRC2 complex in normal cells and RMS and further supports the therapeutic value of targeting of PRC2 in RMS.

SELECTION OF CITATIONS
SEARCH DETAIL
...